
 

ABSTRACT 
The problem of automatically generating hardware 

modules from a high level representation of an application 
has been at the forefront of EDA research in the last few 
years. Such an EDA methodology would potentially enable 
the large pool of software engineers and algorithm IP 
experts without architectural and hardware expertise to 
design and implement platform systems, thus dramatically 
reducing time to market.  

This paper makes the argument that such a methodology 
requires a programming model beyond the sequential 
semantics of languages like C/C++. We argue in favor of 
the streaming programming model in which computation 
and data communication are explicitly separated and 
optimized. Our architectural synthesis tool, Proteus, 
processes stream programs that partition the application 
into a series of streaming kernels that operate on streams of 
data elements. Proteus produces efficient hardware 
accelerators that provide orders of magnitude higher 
throughput than a software implementation, at an area cost 
very close to manual HDL implementation. 

1. INTRODUCTION 

Programming models based on von Neumann 
architectures would naturally map to a centralized 
processor and memory subsystem. These traditional 
architectures with centralized compute structures and large 
caches do not map well on an FPGA where the underlying 
logic and memories are small and distributed throughout 
the chip. To properly capture the programmer’s intent, the 
programming model must express the data access and 
communication explicitly for the compiler to generate the 
appropriate memory structures such as buffers and bus 
networks that implement the memory subsystem.  

Therefore, a new programming paradigm is required that 
exposes data communication to the programmer and 
enables the structuring of bandwidth-efficient software and 

hardware systems. Stream programming is an example of 
such programming model and is ideal for architectures 
synthesized onto FPGAs because the model explicitly 
defines the communication patterns and the nature of the 
computation, enabling the synthesis of unique memory 
subsystems and computation units.  

This paper presents Proteus, an architectural synthesis 
CAD tool, which produces synthesizable HDL code for a 
network of hardware accelerators given a high level 
streaming representation. First, in Section 2, we detail the 
advantages of the streaming programming model to 
express low level and high level parallelism and its 
suitability to express computation that will be implemented 
into hardware, and we explain how we use streaming as the 
underlying technology of Proteus.  

In our work, we use a well-crafted architectural template 
that can be instantiated to match the performance 
requirements, and available FPGA resources for a 
particular application [1]. Section 3 provides details of the 
optimizing compiler and hardware generator that translates 
the streaming kernels into synthesizable Verilog.  

There has been a substantial amount of research on 
hardware generation starting from a high level language 
[2],[3],[4],[5],[6]. Most prior research focuses on the 
computational aspect of the application. The streaming 
architectures generated by the tools presented in this paper 
are different because we focus not only on the computation 
but also on the memory subsystem. We developed a 
benchmark suite of streaming DFGs to further evaluate our 
approach and to show the trade-offs involved between 
performance and area. These results are shown in Section 
4. 

2. STREAMING PROGRAMMING MODEL 

This section presents the details of the streaming 
programming paradigm. In the stream programming 
model, a kernel of computation is formed as a set of 
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localized processor operations that are independent and 
self contained. The processing in each computation kernel 
is regular and repetitive, which often comes in the form of 
a loop structure. These computation kernels can be mapped 
onto a separate hardware accelerator without frequent 
interaction with the processor. 

Traditional compiler optimizations for instruction and 
data level parallelism such as loop unrolling and modulo 
scheduling [7] can be applied not only inside a 
computation kernel but also across kernels.  

Computation kernels consume and produce a uniform 
sequence of data elements (stream records) since the kernel 
operations are regular. Stream data appear to be sequential 
to the computation kernels even though they may be 
scattered throughout memory. Global variables are usually 
not referenced in a kernel. Instead, the stream and other 
scalar values, which hold persistent state, are identified 
explicitly as variables in a data stream or as signals 
between kernels.  

The design process starts with the application 
programmer describing the application in a high level 
language such as C, or a combination of C and Data Flow 
Graphs (Fig. 1). The computation kernels and their 
associated memory accesses are then used to generate 
hardware accelerators to lift the heavy computation load 
from the main processor. Scalar processors are reserved for 
normal conditional code which is not easily parallelizable.  

A task or computation kernel is expressed using a 
streaming data flow graph (sDFG) language, shown in Fig. 
1(b)-(c). A sDFG consists of nodes, representing basic 
arithmetic and logical operations, and directed edges 
representing the dependency of one operation on the output 

of a previous operation. 
In this DFG language, all dependencies are explicitly 

stated. This simplifies the scheduler’s task of identifying 
dependencies and determining which operations can be 
scheduled in parallel, resulting in schedules that are often 
close to optimal, given the functional unit and interconnect 
limits. 

Fig. 1 shows a sequence of representations of a 
quantization function which may be part of a video 
compression algorithm like MPEG-4. As shown in Fig. 
1(b), the input and output streams are loaded in the kernel 
and stored to the memory with the vld and vst operations, 
respectively. Internal operation nodes represent 
computation such as extracting the sign of a number, 
subtraction, multiplication, and arithmetic shift. Note that 
the kernel simply operates on incoming streams and 
produces outgoing streams, and that there is no dynamic 
address calculation of memory accesses in the kernel. 

In this simple example, if we assume that the final 
implementation includes only one ALU, one multiplier, 
and one shifter, the organization of these resources could 
be depicted as shown in Fig. 1(d). Each functional unit is 
supported with output queues of depth 1 used to 
temporarily store the produced data. The shared resources 
have multiplexers at their input ports. The implementation 
of Fig. 1(d) follows the template architecture shown in Fig. 
2. The template consists of two parts: data path and stream 
unit. The data path is generated based on a computation 
kernel (such as the one of Fig. 1(b)), while the stream unit 
is derived from stream access patterns.  

A data path consists of a network of functional units 
that produce and consume streaming data elements. A 
reconfigurable link is formed by a tree of multiplexers and 
buffers to direct proper data elements from the output of a 
producing functional unit to the input of the next 
consuming functional units. The control logic is distributed 
and spatially near the corresponding functional unit, 
multiplexer, and buffers. Unlike a centralized VLIW 
codeword which tends to increase the signal critical path, 
distributed control logic avoids long interconnects in 
critical paths. The reconfigurable parameters of the data 
path include the following: type of functional units (ALUs, 
multipliers, shifters, etc), the custom operation performed 
within a type (e.g. only addition or subtraction for an 
ALU), the width of the functional unit, the size and number 
of storage elements, the interconnect between functional 
units, and the bandwidth to and from the stream unit [8].  

The stream programming model allows a programmer to 
explicitly define the characteristics of the data streams 
between computation kernels and the memory. Dedicated 
hardware, called stream unit, is used for data movement 
such that communication is decoupled from computation. 
The stream units assemble the stream records and present 

Void quant (short *out, short *in, int n, short qp) {
long rq, b,c;

rq = ((1<<16) + qp) / (qp << 1);
b  = qp - ! (qp & 1);
while (- -n <= 0) {

c = *in++;
if (c <0)       c +=b;
else if (c>0) c -=b;
*out++ = (c * rq) / (1<<16);

}
}

• vsign produces -1, 0, 1 for <0, ==0, >0
• Scalar s1 is rq
• Scalar s2 is b
• Vasr0 is arithmetic shift right and truncate towards zero

i.e. integer divide by power of 2

vsign vmul vsub vmul vasr0

vld v1

vst v0

vscalar s2 vscalar s1 vimm 16(b) (rq) (16)

(in)

(out)

(sign of c)
+/-b

c -/+b (c -/+b)*rq [(c -/+b)*rq]>>16

vqnt: vbegin Q11-Q1,0 // while (-- n >= 0) {
Q1: vld.s16 (v1) // c = *in++;
Q2: vsign.s16 Q1
Q3: vscalar s2 // s2 is b
Q4: vscalar s1 // s1 is rq
Q5: vimm 16
Q6: vmul.s16 Q2,Q3 // if (c<0)        c += b;
Q7: vsub.s16 Q1,Q6 // else if (c>0) c -=b;
Q8: vmul.s32 Q7,Q4 // c *= rq;
Q9: vasr0.s16 Q8,Q5 // *out++ = c / (1 << 16);
Q10: vst.s16 Q9,(v0)
Q11: vend

 
Fig. 1. The C quant function is transformed to a sDFG and 
finally to a streaming accelerator. Note that only the code 
within the while loop is mapped into hardware. 



 

them to the computation kernels as ordered packets. Much 
like vector processing, stream programs hide latency, 
amortize instruction overhead and expose data parallelism 
by operating on large sets of data.  

The programmer describes the memory access patterns 
using stream descriptors, which define the shape and 
location of data in memory. This decoupling allows the 
stream interface units to take advantage of available 
bandwidth to prefetch data before it is needed. Data is 
transferred though the stream units, which are programmed 
using stream descriptors.  

A stream descriptor is represented by the tuple (Type, 
Start_Address, Stride, Span, Skip, Size) where: 
• Type indicates how many bytes are in each element 

(Type is 0 for bytes, 1 for 16-bit half-words, etc.) 
• Start_Address represents the memory address of the 

first stream element. 
• Stride is the spacing in number of elements between 

two consecutive stream elements. 
• Span is the number of elements that are gathered before 

applying the skip offset 
• Skip is the offset applied between groups of span 

elements, after the stride has been applied 
• Size is the number of elements in the stream  

The stream unit handles all issues regarding 
loading/storing of data including: address calculation, 
alignment, data ordering, and bus interfacing. The stream 
unit consists of one or more input and output stream 
modules, and is generated to match the characteristics of 
the programmer’s description of the stream data through 
stream descriptors, the characteristics of the bus-based 
system, and the streaming datapath (Fig. 2).  

3. PROTEUS TOOLSET 

The sDFG kernels and their stream descriptors, and 

other resource constraints, such as maximum gate count 
and maximum bandwidth in and out the kernel, are used by 
our compiler to allocate a set of functional units (step 1). 
Then using modulo scheduling compilation a sequence of 
events are arranged so that the functional units can operate 
properly (step 2). The sequence of events is similar to a 
series of VLIW (very long instruction word) operations. 
The streaming hardware accelerator, consisting of a data 
path and stream unit, is then selected (step 3). An interim 
hardware description file is used to list the components 
within the accelerator. The sDFG nodes and arcs have been 
associated with hardware resources such as functional units 
and queues. A set of state machines is also listed to 
generate the proper control signals. The hardware is then 
generated (step 4) and synthesized (step 5) into the FPGA. 
This process is repeated for each streaming kernel. The 
following paragraphs focus on the VLIW scheduling 
process. 

The scheduler receives as input the sDFG along with 
the user and system constraints and schedules the operation 
of the sDFG to optimize throughput. The scheduler uses 
modulo scheduling to overlap multiple iterations in each 
cycle and exploits all the available parallelism under the 
resource constraints and data dependencies.  

A strict lower bound of the initiation interval, called 
Minimum Initiation Interval (MII), is obtained by the 
number of available resources and the loop cross-iteration 
data dependencies. The schedule is generated within the 
MII window by first scheduling the nodes from top to 
bottom (forward scheduling) using a greedy approach. In 
this step, the nodes are scheduled immediately when all 
their parents have been scheduled and there exists an 
available resource to execute them.  

The scheduler only generates the code for the steady 
state body of the schedule and not for the prologue and 
epilogue, as is often the case in modulo scheduling. To be 
able to perform correct execution of the prologue and 
epilogue parts of the scheduled code, the generated 
hardware utilizes valid bits. Each data token that populates 
the functional unit inputs, outputs and line queues in every 
clock cycle is tagged with a valid bit. An operation 
produces valid output data only if both input data are valid. 
A source operation (like a stream load) produces data with 
valid bits when the data are available, and a sink operation 
(like a stream store) accepts data only when they are valid. 
This hardware enhancement ensures correct execution of 
the code, since a functional unit produces valid data in a 
given clock cycle, only when it performs an operation in 
that cycle and its inputs are all valid. 

Next, the tool flow binds the operation nodes to the 
functional unit slices, and generates the register queues at 
the output of each slice to store the streaming outputs as 
they are produced by the FUs.  

The stream unit design is generated based on user and 
system constraints. The size and number of buffer elements 
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Fig. 2. Streaming accelerator template including the Stream 
Unit and the Data Path.  



 

are chosen to meet the performance of the bus as well as 
the target performance of the generated data path. For 
example, the number of bus address queue elements, used 
to store pending addresses, is set to at least the bus pipeline 
factor so that bus transfers are sustained without stalling 
the data path. The number of line buffer elements, used to 
store data, should be at least the bus size to enable bus 
transfers. 

In addition, the number of stream line buffer (used to 
store pending stream elements in a FIFO) is set to match 
the maximum bandwidth of the data path so that the stream 
unit can buffer the proper number of stream elements that 
can be consumed by the data path in a single cycle.  

Finally, the HDL constructor reads the HLM 
representation and emits structural Verilog for the data 
path and the stream unit.  

4. EXPERIMENTAL EVALUATION 

The selected benchmarks are part of applications such 
as video codecs, image processing and computer vision. 
Some benchmarks are “kernels”, representing portions of 
applications selected for implementation and manually 
mapped to sDFGs and stream descriptors.  

Benchmarks such as lpr, hpf, lpf, and lens are 
complete applications and consist of smaller component 
kernels. The lpr application concerns the automatic 
recognition of license plates and is implemented into three 
stages.  

The lens benchmark, which consists of a single sDFG, 
is a complex image warping application that performs 
correction of images from the wide angle lens space to the 
2D rectilinear space. The two benchmarks, lpf and hpf, 
perform a sequence of image processing steps used in a 
digital camera.  

Fig. 3 shows the number of FPGA slices for the data 
path part of these benchmarks. Higher slice count 
represents sDFGs that require more complex computation. 
For example, the lens occupies almost 30% of the Virtex 
4LX80 device.  The intent of Fig. 3 is to show the 
capability of Proteus to handle both simple and complex 
sDFGs producing very high quality accelerators in a 
fraction of the manual design time. 

Using Proteus has resulted into large productivity 
gains. For example, an input representation of 800 lines of 
the sDFG lens code generated more than 100,000 lines of 
Verilog, significantly cutting the engineering development 
time. To further illustrate the efficiency of the tool, we 
implemented the software version of the lens code in C and 
we compared its performance when executed in the Core 2 
Quad processor against the hardware accelerators 
generated by Proteus. In order to make a fair comparison, 
we optimized the code to exploit the quad-threaded, SIMD 
architecture of Core 2 Quad by using the Intel pthread 
library and by manually rewriting the inner loops of the 
benchmark using the x86 SSE ISA extensions. The FPGA 
version provided a speed up of around 1.4x, or 56x per Hz, 

enabling real time lens distortion correction of VGA output 
frames at 22 frames/sec. Moreover, the clock frequency, 
throughput, and area overhead of the generated hardware 
were very close to the theoretical bounds of a manual HDL 
implementation. 
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Fig. 3.  Area comparison between different application 
benchmarks 


