PROTEUS: ANARCHITECTURAL SYNTHESISTOOL BASED ON THE STREAM
PROGRAMMING PARADIGM

Nikolaos Bella5 Sek M. Chd&i Malcolm Dwyef Dan Linzmeief Abelardo Lopez-Lagunas

Computer Engineering and Motorola, Inc? Departamento de
Communications Departmént Schaumburg, IL Mecatrénica
University of Thessaly, Volos, USA ITESM-Toluca, Mexico

Greece sek.chai@motorola.com

nbellas@uth.gr

ABSTRACT hardware systems. Stream programming is an example of

The problem of automatically generating hardware such programming model and is ideal for architectures
modules from a high level representation of an apjtica synthesized onto FPGAs because the model explicitly
has been at the forefront of EDA research in thefiag defines the communication patterns and the nature of the
years. Such an EDA methodology would potentially enable computation, enabling the synthesis of uniqgue memory
the large pool of software engineers and algorithm IP subsystems and computation units.
experts without architectural and hardware expertise to This paper presents Proteus, an architectural systhesi
design and implement platform systems, thus dramaticallyCAD tool, which produces synthesizable HDL code for a
reducing time to market. network of hardware accelerators given a high level

This paper makes the argument that such a methodolog¥treaming representation. First, in Section 2, we detail
requires a programming model beyond the sequentialagyantages of the streaming programming model to
semantics of languages like C/C++. We argue in favor of gxpress low level and high level parallelism and its
the streaming programming model in which computation ,iapility to express computation that will be implemente

an? _datg cgmmunlchqtlor; arle exgl:cn]y ?eplaraltjedt andjnig hardware, and we explain how we use streaminigeas t
optimized. Our architectural synthesis tool, Proteus, underlying technology of Proteus.

processes stream programs that partition the applicatio i :
into a series of streaming kernels that operate oarsg®f In our work, we use a well-crafted architectural tergpla
that can be instantiated to match the performance

data elements. Proteus produces efficient hardware . d labl f
accelerators that provide orders of magnitude higher'€duirements, and available FPGA resources for a

throughput than a software implementation, at an area cosParticular application [1]. Section 3 provides details @f th
very close to manual HDL implementation. optimizing compiler and hardware generator that translates

the streaming kernels into synthesizable Verilog.
1. INTRODUCTION There has been a substantial amount of research on
. hardware generation starting from a high level language
Programming models based on von Neumann ;) 3} 141 15][6]. Most prior research focuses on the
architectures would naturally map to a centralized compytational aspect of the application. The streaming
processor and memory subsystem. These traditionalychitectures generated by the tools presented in this paper
architectures with centralized Compute structures argd! lar are different because we focus not Only on the Computation
caches do not map well on an FPGA where the underlyingbut also on the memory subsystem. We developed a
logic and memories are small and distributed throughoutbenchmark suite of streaming DFGs to further evaluate our
the chip. To properly capture the programmer’s intére, approach and to show the trade-offs involved between
programming model must express the data access angerformance and area. These results are shown in i8ectio
communication explicitly for the compiler to generate the 4.
appropriate memory structures such as buffers and bus
networks that implement the memory subsystem. 2. STREAMING PROGRAMMING MODEL
Therefore, a new programming paradigm is required that This section presents the details of the streaming

exposes data communication to the programmer andprogramming paradigm. In the stream programming
enables the structuring of bandwidth-efficient softwamd model, a kernel of computation is formed as a set of

localized processor operations that are independent anaf a previous operation.

self contained. The processing in each computation kernel In this DFG language, all dependencies are explicitly
is regular and repetitive, which often comes in the fofm stated. This simplifies the scheduler’s task of identiyi

a loop structure. These computation kernels can be mappegependencies and determining which operations can be
onto a separate hardware accelerator without frequentischeduled in parallel, resulting in schedules that are ofte

interaction with the processor. _ _ close to optimal, given the functional unit and inter@min
Traditional compiler optimizations for instruction and |imits.

data level parallelism such as loop unrolling and modulo Fig. 1 shows a sequence of representations of a
scheduling [7] can be applied not only inside a gyantization function which may be part of a video
computation kernel but also across kernels. _ compression algorithm like MPEG-4. As shown in Fig.
Computation kernels consume and produce a uniformyp) the input and output streams are loaded in the kernel
sequence of data elements (stream records) since thé kerng,g stored to the memory with thlel andvst operations
operations are regular. Stream data appear to be seduent respectively. Internal operation nodes represent
to the computation kernels even though they may becomputation such as extracting the sign of a number,
scattered throughout memory. Global variables are usuallygptraction, multiplication, and arithmetic shift. Nabet
not referenced in a kernel. Instgad, the stream dmetot the kernel simply operates on incoming streams and
scalar values, which hold persistent state, are 'de”t'f'edproduces outgoing streams, and that there is no dynamic
explicitly as variables in a data stream or as sgnal aqgress calculation of memory accesses in the kernel.
between kernels. _ o In this simple example, if we assume that the final
The design process starts with the application jmplementation includes only one ALU, one multiplier,
programmer describing the application in a high level ang one shifter, the organization of these resourcalsl co
language such as C, or a combination of C and Data Flowye depicted as shown in Fig. 1(d). Each functional unit is
Graphs (Fig. 1). The computation kernels and their supported with output queues of depth 1 used to
associated memory accesses are then used to generafgmporarily store the produced data. The shared resources
hardware accelerators to lift the heavy computation loadpaye multiplexers at their input ports. The implementation
from the main processor. Scalar processors areve58r ot Fig. 1(d) follows the template architecture shownim F
normal conditional code which is not easily paralléilea 2. The template consists of two parts: data path andrstrea
A task or computation kernel is expressed using aypit. The data path is generated based on a computation
streaming data flow graph (sDFG) language, shown in Fig.emel (such as the one of Fig. 1(b)), while the straain
1(.b)-(c).. A sDFG consists of _nodes, representing basicis derived from stream access patterns.
arithmetic and logical operations, and directed edges A gata path consists of a network of functional units
representing the dependency of one operation on the outpu, 5¢ produce and consume streaming data elements. A

(@ code (6) SDFG text code reconfigurable link is formed by a tree of multiplexers an
Wt egn QILQLO whie (-n>=0){ buffers to direct proper data elements from the outpat of
Void quant (short *out, short *in, int n, short gp) { QL vdsle 1) Iic=Yint+; . y B .
e @ wigsts Q1 producing functional unit to the input of the next
rq=((1<<16) + qp)/ (qp << 1); Q3: vscalar s2 lls2isb

bkl el % o st consuming functional units. The control logic is distriloute
:.‘:;L?’Ezofffﬁf @ wase @@ e con and spatially near the corresponding functional unit,
o = () (1<<i6; iy ¢ A s RN multiplexer, and buffers. Unlike a centralized VLIW

) Qo st Qa0 ‘ codeword which tends to increase the signal critict,pa

}

Fig. 1. The C quant function is transformed to a sDFG and
finally to a streaming accelerator. Note that onlg ttode
within the while loop is mapped into hardware.

distributed control logic avoids long interconnects in
critical paths. The reconfigurable parameters of thia da
path include the following: type of functional units (ALUs,

(d) Resulting streaming accelerator. Resource
constraints: 1 ALU, 1 MUL, 1 shifter.
(c) sDFG graphical representation Iteration Interval I1=2

multipliers, shifters, etc), the custom operation penfe
s I within a type (e.g. only addition or subtraction for an
sgrisub m shifer ALU), the width of the functional unit, the size andwher
- vsign produces -1, 0, 1for <0, 220,50 ' of storage elements, the interconnect between functional
[Selwazib units, and the bandwidth to and from the stream unit [8].
R Cue thad by powd o e onards 2010 The stream programming model allows a programmer to

explicitly define the characteristics of the data stream

between computation kernels and the memory. Dedicated
hardware, called stream unit, is used for data movement
such that communication is decoupled from computation.
The stream units assemble the stream records andprese

Stream Unit

Data Path

System Bus

Arbiter & Bridge

Input Stream

To other
Input Stream

Bus Line Buffer

To Output
Stream

|

[Regster]

¥
1

1

1

1

1

1

1

1

1

1 | | | ¥ -

1 -
i
1

1

1 |

1

1

1

1

1

1

[

other resource constraints, such as maximum gate count
and maximum bandwidth in and out the kernel, are used by
our compiler to allocate a set of functional unitsgsi¢.
Then using modulo scheduling compilation a sequence of
events are arranged so that the functional units camteper
properly (step 2). The sequence of events is similar to a
series of VLIW (very long instruction word) operations.
The streaming hardware accelerator, consisting of a data
path and stream unit, is then selected (step 3). Annmteri
hardware description file is used to list the components
within the accelerator. The sDFG nodes and arcs have been
associated with hardware resources such as functional unit
and queues. A set of state machines is also listed to

generate the proper control signals. The hardwareers th
generated (step 4) and synthesized (step 5) into the FPGA.
This process is repeated for each streaming kernel. The
following paragraphs focus on the VLIW scheduling
rocess.
them to the computgtion kernels as ordered pgckets. Muc The scheduler receives as input the SDFG along with
like vector processing, stream programs hide latency,ihe yser and system constraints and schedules the operati
amortize instruction overhead and expose data parallelismyf the SDFG to optimize throughput. The scheduler uses
by operating on large sets of data. modulo scheduling to overlap multiple iterations in each
The programmer describes the memory access patterngycle and exploits all the available parallelism under t
using stream descriptors, which define the shape andesource constraints and data dependencies.
location of data in memory. This decoupling allows the A strict lower bound of the initiation interval, oadl
stream interface units to take advantage of availableMinimum Initiation Interval (MIl), is obtained by the
bandwidth to prefetch data before it is needed. Data isnumber of available resources and the loop crosdidara
transferred though the stream units, which are progeinm data dependencies. The schedule is generated within the
using stream descriptors. MIl window by first scheduling the nodes from top to

A stream descriptor is represented by the tubiee bottom (forward scheduling) using a greedy approach. In
Start_Address, Sride, Span, Skip, Size) where: this step, the nodes are scheduled immediately when all

« Type indicates how many bytes are in each element their parents have been scheduled and there exists an

(Type is O for bytes, 1 for 16-hit half-words, etc.) available resource to execute them.
. Sart Address represents the memory address of the The scheduler only generates the code for the steady
first stream element state body of the schedule and not for the prologue and

- Stride is the spacing in number of elements between epilogue, as is often the case in.modulo scheduling. To be
WO consecutive stream elements. ab!e to perform correct execution of the prologue and
» Span is the number of elements that are gathered beforeeIOIIOgue parts Of. th_e scheduled code, the generated
applying the skip offset hardware_ utlllzes_/al_ld bits. Each data token that populates
S . the functional unit inputs, outputs and line queues in every
* Skip is the offset applled between groups of span ¢, cycle is tagged with a valid bit. An operation
e!ements, after the stride has bfeen applied produces valid output data only if both input data are valid.
* Szeis the number of elements in the stream A source operation (like a stream load) produces data with
The stream unit handles all issues regarding qjig pits when the data are available, and a sink Gpara
Iogdlng/storlng of dqta mcIudmg:l addre_ss calculation, (like a stream store) accepts data only when theyadie: v
alignment, data ordering, and bus interfacing. The streamrhjs hardware enhancement ensures correct execution of
unit consists of one or more input and output streamthe code, since a functional unit produces valid data in a
modules, and is generated to match the characteratics given clock cycle, only when it performs an operation i
the programmer’s description of the stream data throughthat cycle and its inputs are all valid.
stream descriptors, the characteristics of the bumsdbas Next, the tool flow binds the operation nodes to the
system, and the streaming datapath (Fig. 2). functional unit slices, and generates the register qudues a
the output of each slice to store the streaming outputs as
they are produced by the FUs.
The stream unit design is generated based on user and
system constraints. The size and number of buffereziesn

Fig. 2. Streaming accelerator template including the Stream
Unit and the Data Path.

3. PROTEUSTOOL SET
The sDFG kernels and their stream descriptors, and

o
=
N
N
©

are chosen to meet the performance of the bus asawell
the target performance of the generated data path. For
example, the number of bus address queue elements, used®®]
to store pending addresses, is set to at least the bliagipe 3500 -
factor so that bus transfers are sustained withoutnstal 3000 -
the data path. The number of line buffer elements, wsed t 42500 |
store data, should be at least the bus size to enable bus,,, |
transfers.

In addition, the number of stream line buffer (used to
store pending stream elements in a FIFO) is setatzhm
the maximum bandwidth of the data path so that therstrea ‘
unit can buffer the proper number of stream elements tha ° o T ‘

. . dct-c dct-r quant hpf Ipf Ipr color close conv open lens
can be consumed by the data path in a single cycle. Data Flow Graphs

Finally, the HDL constructor reads the HLM

representation and emits structural Verilog for theadat Fig. 3. Area comparison between different application
path and the stream unit. benchmarks

i

4500

1000 1

500 -

4. EXPERIMENTAL EVALUATION . . . _ .
The selected benchmarks are part of applications Sud}enablmg real time lens distortion correction of VGétput
rames at 22 frames/sec. Moreover, the clock frequency,

as video codecs, |mage“ proces”smg and computer V'S'Onthroughput, and area overhead of the generated hardware
Some benchmarks are “kernels”, representing portions of

e . ; were very close to the theoretical bounds of a madD&l

applications selected for implementation and manually .)
, implementation.

mapped to sDFGs and stream descriptors.

Benchmarks such as$pr, hpf, Ipf, and éns are
complete applications and consist of smaller component _ . . .
kernels. The |pr app"cation concerns the automatic [1] Nikolaos .Bellas, Sek Chai, Malcolm Dwyer, Dan Llnzmgler
recognition of license plates and is implemented inteethr An Architectural Framework for Automated Streaming
stages. Kernel Selection. 1% Reconfigurable Architectures

Thelens benchmark, which consists of a single sDFG, 2] Workshop (RAW), March 2007, Long Beach, CA

. . . S M. Gokhale. et. al. Stream-Oriented FPGA Computing in the
is a complex image warping application that performs Streams-C High Level LanguageProcesdings of

5. REFERENCES

correction of images from the wide angle lens spatketo International Conference on Field Programmable Custom

2D rectilinear space. The two benchmarld, and hpf, Computing Machines (FCCM), 2000, 49-56.

perform a sequence of image processing steps used in g8] D. Lau, O. Pritchard, P. Molson. Automated Generation of
digital camera. Hardware Accelerators with Direct Memory Access from

Fig. 3 shows the number of FPGA slices for the data ~ ANSI/ISO Standard C Functionmternational Symposium
path part of these benchmarks. Higher slice count gggée'd'ngraﬂ“mabc'eCUStO“gCOWPU“”g Machines, April
. . , Napa Valley, CA, 45-5
represents sDFGs that require more complex computation . I
FOF:‘ example, théens occugies almost 3002 of the Sirtex [4] F. Plavec, Z. Vranesic, S. Brown. Towards Compilatibn o
41.X80 devic’e The intent of Fig. 3 is to show the Streaming Programs into FPGA_hardwarorum on

. ; Specification, Verification and Design Languages,
capability of Proteus to handle both simple and complex September 2008, Sophia Antipolis, France

sDFGs producing very high quality accelerators in a [5] O. Mencer. et. al. Design Space Exploration with a Stream

fraction of the manual design time. Compiler. Proceedings of International Conference on Field
Using Proteus has resulted into large productivity Programmable Technology (FPT), Tokyo, December 2003,
gains. For example, an input representation of 800 tifes 270-27

the sDFGlens code generated more than 100,000 lines of [6] E:tré?ggsnepéuit al. A Mﬁ;‘;ﬁf?g&‘;@g'er for diigriggbet%g
Verilog, significantly cutting the engineering development o : !
time. To further illustrate the efficiency of the toate Zf;fonrf'cpgﬁj%euetﬂgga agfhirtgi QEEEMiy?;ﬁS'luﬁl9(,)”20';'8,'d
implemented the software version of tiees code in C and pp. 39-48, Napa Valley, CA

we compared its performance when executed in the Core 27 BR. Rau. lterative Modulo Schedulingnternational
Quad processor against the hardware accelerators Journal of Parallel Processing, 1996, 24:3-64

generated by Proteus. In order to make a fair comparison[8] N. Bellas, S.M. Chai, M. Dwyer, D. Linzmeier. Tempglat
we optimized the code to exploit the quad-threaded, SIMD based generation of streaming accelerators from a high le
architecture of Core 2 Quad by using the Intel pthread representation. International ~Symposum on Field-
library and by manually rewriting the inner loops of the Programmable Custom Computing Machines (FCCM), April
benchmark using the x86 SSE ISA extensions. The FPGA 2426, 2006, Napa Valley, CA

version provided a speed up of around 1.4x, or 56x per Hz,

